Rho site logo

Rho Knows Clinical Research Services

“This drug might be harmful!  Why was it approved?”  What the news reports fail to tell us.

Posted by Brook White on Thu, Apr 19, 2018 @ 08:39 AM

Share:

Jack Modell, MD, Vice President and Senior Medical OfficerJack Modell, MD, Vice President and Senior Medical Officer is a board-certified psychiatrist with 35 years’ of experience in clinical research and patient care including 15 years’ experience in clinical drug development. He has led successful development programs and is a key opinion leader in the neurosciences, has served on numerous advisory boards, and is nationally known for leading the first successful development of preventative pharmacotherapy for the depressive episodes of seasonal affective disorder.

David Shoemaker, PhD, Senior Vice President, R&DDavid Shoemaker, PhD, Senior Vice President R&D, has extensive experience in the preparation and filing of all types of regulatory submissions including primary responsibility for four BLAs and three NDAs.  He has managed or contributed to more than two dozen NDAs, BLAs, and MAAs and has moderated dozens of regulatory authority meetings.  

Once again, we see news of an approved medication* being linked to bad outcomes, even deaths, and the news media implores us to ask:  

drugs and biologics in the news“How could this happen?”
“Why was this drug approved?”
“Why didn’t the pharmaceutical company know this or tell us about it?”
“What’s wrong with the FDA that they didn’t catch this?”
“Why would a drug be developed and approved if it weren’t completely safe?”

And on the surface, these questions might seem reasonable.  Nobody, including the drug companies and FDA, wants a drug on the market that is unsafe, or for that matter, wants any patient not to fare well on it.  And to be very clear at the outset, in pharmaceutical development, there is no room for carelessness, dishonesty, intentionally failing to study or report suspected safety signals, exaggerating drug benefits, or putting profits above patients – and while there have been some very disturbing examples of these happening, none of this should ever be tolerated.  But we do not believe that the majority of reported safety concerns with medications are caused by any intentional misconduct or by regulators failing to do their jobs, or that a fair and balanced portrayal of a product’s risk-benefit is likely to come from media reports or public opinion alone.

While we are not in a position to speculate or comment upon the product mentioned in this article specifically, in most cases we know of where the media have reported on bad outcomes for patients taking a particular medication, the reported situations, while often true, have rarely been shown to have been the actual result of taking the medication; rather, they occurred in association with taking the medication.  There is, of course, a huge difference between these two, with the latter telling us little or nothing about whether the medication itself had anything to do with the bad outcome.  Nonetheless, the news reports, which include catchy headlines that disparage the medication (and manufacturer), almost always occur years in advance of any conclusive data on whether the medication actually causes the alleged problems; and in many cases, the carefully controlled studies that are required to determine whether the observed problems have anything directly to do with the medication eventually show that the medication either does not cause the initially reported outcomes, or might do so only very rarely.  Yet the damage has been done by the initial headlines:  patients who are benefiting from the medication stop it and get into trouble because their underlying illness becomes less well controlled, and others are afraid to start it, thus denying themselves potentially helpful – and sometimes lifesaving – therapy.  And ironically, when the carefully controlled and adequately powered studies finally do show that the medication was not, after all, causing the bad outcomes, these findings, if reported at all, rarely make the headlines. 

Medications do, of course, have real risks, some serious, and some of which might take many years to become manifest.  But why take any risk?  Who wants to take a medication that could be potentially harmful?  If the pharmaceutical companies have safety as their first priority, why would they market something that they know carries risk or for which they have not yet fully assessed all possible risks?  There’s an interesting parallel here that comes to mind.  I recently airplane-1heard an airline industry representative say that the airlines’ first priority is passenger safety.  While the U.S. major airlines have had, for decades, a truly outstanding safety record, could safety really be their first priority?  If passenger safety were indeed more important than anything else, no plane would ever leave the gate; no passengers would ever board.  No boarding, no leaving, and no one could ever possibly get hurt.  And in this scenario, no one ever flies anywhere, either.  The airlines’ first priority has to be efficient transportation, though undoubtedly followed by safety as a very close second.  Similarly, the pharmaceutical industry cannot put guaranteed safety above all else, or no medications would ever be marketed.  No medications and no one could ever get hurt.  And in this scenario, no one ever gets treated for illnesses that, without medications, often harm or kill.  In short, where we want benefit, we must accept risks, including those that may be unforeseeable, and balance these against the potential benefits.

OK then:  so bad outcomes might happen anyway and are not necessarily caused by medication, worse outcomes can happen without the medications, and we must accept some risk.  But isn’t it negligent of a pharmaceutical company to market a medication before they actually know all the risks, including the serious ones that might only happen rarely?  Well, on average, a new medicine costs nearly three-billion dollars and takes well over a decade to develop, and it is tested on up to a few thousand subjects.  But if a serious adverse event did not occur in the 3000 subjects who participated in the clinical trials to develop the medicine, does this show us that the medicine is necessarily safe and unlikely to ever harm anybody?  Unfortunately, it does not.  As can be seen by the statistical rule of three**, this can only teach us that, with 95% confidence, the true rate of such an event is between zero and 1/1000.  And while it may be comforting that a serious event is highly unlikely to occur in more than 1/1000 people who take the medication, if the true rate of this event is, let’s say, even 1/2000, there is still greater than a 90% chance that a serious adverse event will occur in at least one person among the first 5000 patients who take the medication!  Such is the nature of very low frequency events over thousands of possible ways for them to become manifest.

So why not study the new medication in 10,000 subjects before approval, so that we can more effectively rule out the chances of even rarer serious events?  There is the issue of cost, yes; but more importantly, we would now be extending the time to approval for a new medicine by several additional years, during which time far more people are likely to suffer by not having a new and needed treatment than might ever be prevented from harm by detecting a few more very rare events.  There is a good argument to be made that hurting more people by delaying the availability of a generally safe medication to treat an unmet medical need in an effort to try to ensure what might not even be possible – that all potential safety risks are known before marketing – is actually the more negligent course of action.  It is partly on this basis that the FDA has mechanisms in place (among them, breakthrough therapy, accelerated approval, and priority review) to speed the availability of medications that treat serious diseases, especially when the medications are the first available treatment or if the medication has advantages over existing treatments.  When these designations allow for a medication to be marketed with a smaller number of subjects or clinical endpoints than would be required for medications receiving standard regulatory review, it is possible that some of these medications might have more unknown risks than had they been studied in thousands of patients.  In the end, however, whatever the risks – both known and unknown – if we as a society cannot accept them, then we need to stop the development and prescribing of medicines altogether.  

*Neither of the authors nor Rho was involved in the development of the referenced product.  This post is not a comment on this particular product or the referenced report, but rather a response to much of the media coverage of marketed drugs and biologics more broadly.

**In statistical analysis, the rule of three states that if a certain event did not occur in a sample with n subjects, the interval from 0 to 3/n is a 95% confidence interval for the rate of occurrences in the population.  https://en.wikipedia.org/wiki/Rule_of_three_(statistics)  

The probability that no event with this frequency will occur in 5000 people is (1 - .005)5000, or about 0.082.

Free Webinar: Expedited Development and Approval Programs